Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

نویسندگان

  • R A Parker
  • B C Pearce
  • R W Clark
  • D A Gordon
  • J J Wright
چکیده

Tocotrienols are natural farnesylated analogues of tocopherols which decrease hepatic cholesterol production and reduce plasma cholesterol levels in animals. For several cultured cell types, incubation with gamma-tocotrienol inhibited the rate of [14C]acetate but not [3H] mevalonate incorporation into cholesterol in a concentration- and time-dependent manner, with 50% inhibition at approximately 2 microM and maximum approximately 80% inhibition observed within 6 h in HepG2 cells. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase total activity and protein levels assayed by Western blot were reduced concomitantly with the decrease in cholesterol synthesis. In HepG2 cells, gamma-tocotrienol suppressed reductase despite strong blockade by inhibitors at several steps in the pathway, suggesting that isoprenoid flux is not required for the regulatory effect. HMG-CoA reductase protein synthesis rate was moderately diminished (57% of control), while the degradation rate was increased 2.4-fold versus control (t1/2 declined from 3.73 to 1.59 h) as judged by [35S]methionine pulse-chase/immunoprecipitation analysis of HepG2 cells treated with 10 microM gamma-tocotrienol. Under these conditions, the decrease in reductase protein levels greatly exceeded the minor decrease in mRNA (23 versus 76% of control, respectively), and the low density lipoprotein receptor protein was augmented. In contrast, 25-hydroxycholesterol strongly cosuppressed HMG-CoA reductase protein and mRNA levels and the low density lipoprotein receptor protein. Thus, tocotrienols influence the mevalonate pathway in mammalian cells by post-transcriptional suppression of HMG-CoA reductase, and appear to specifically modulate the intracellular mechanism for controlled degradation of the reductase protein, an activity that mirrors the actions of the putative non-sterol isoprenoid regulators derived from mevalonate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth.

The availability of compactin (ML-236B), a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl Coenzyme A reductase, has permitted the demonstration of a hitherto unsuspected aspect of mevalonate metabolism and isoprenoid synthesis in cultured mammalian cells. 3-Hydroxy-3-methylglutaryl Coenzyme A reductase, the enzyme that synthesizes mevalonate, appears to be regulated through a multiv...

متن کامل

Potential of tocotrienols in the prevention and therapy of Alzheimer's disease.

Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulati...

متن کامل

Properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase solubilized from rat liver and hepatoma.

In hepatomas, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme in cholesterol biosynthesis, is not normally suppressed by cholesterol. To examine the biochemical mechanism of this loss of feedback control of cholesterol synthesis, a comparison was made of the properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase after solubilization and partia...

متن کامل

Properties of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Solubilized from Rat Liver and Hepatoma*

In hepatomas, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme in cholesterol biosynthesis, is not normally suppressed by cholesterol. To examine the biochemical mechanism of this loss of feedback control of cholesterol synthesis, a comparison was made of the properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase after solubilization and partia...

متن کامل

Effect of hydrophobic bile acids on 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and mRNA levels in the rat.

We have previously reported that relatively hydrophobic bile acids, decreased hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (reductase) activity whereas, hydrophilic bile acids had little effect on the enzyme. The purpose of the present study was to determine in more detail the mechanism of down-regulation of hepatic reductase activity by hydrophobic bile salts. Groups of rats were fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 15  شماره 

صفحات  -

تاریخ انتشار 1993